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Blooms of the Toxic Dinoflagellate Alexandriumfundyense in the Gulf of

Maine: Investigations using a Physical-Biological Model

by
Charles A. Stock

MIT/WHOI Joint Program in Oceanography and Oceanographic Engineering

Submitted to the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint
Program in Oceanography and Oceanographic Engineering on December 21, 2004 in partial fulfillment of

the requirements for the Degree of Doctor of Philosophy

ABSTRACT

Blooms of the toxic dinoflagellate Alexandriumfundyense are annually recurrent in the
western Gulf of Maine (WGOM) and pose a serious economic and public health threat.
Transitions between and vital rates within the life stages of A. fundyense are influenced
by diverse environmental factors, and these biological dynamics combine with energetic
physical motions to yield complex bloom patterns. In this thesis, a biological model of
the A. fundyense life cycle developed from laboratory and field data is combined with a
circulation model to test hypotheses concerning the factors governing A. fundyense
blooms in the springs of 1993 and 1994.

There is considerable uncertainty with the biological dynamics, and several biological
model structures are tested against the 1993 observations. Maximum likelihood theory is
used to evaluate the statistical significance of changes in model/data fit between
structures. Biological formulations that do not include either nitrogen limitation or
mortality overestimate observed cell abundances and are rejected. However,
formulations using a wide range of mortality and nitrogen dependence, including the
exclusion of one or the other, were able to match observed bloom timing and magnitude
and could not be statistically differentiated. These simulations suggest that cysts
germinating offshore of Casco Bay provide a plausible source of cells for the blooms,
although cell inputs from the eastern Gulf of Maine gain importance late in the spring and
in the northeast portion of the study area. Low net growth rates exert a notable yet non-
dominant influence on the modeled bloom magnitude.

When simulations tuned to 1993 were applied to 1994 the degree of model/data fit is
maintained only for those simulations including nitrogen dependence. The model
suggests that differences in toxicity between the two years result from variability in the
wind and its influence on the along and cross-shore transport of cells. Extended
simulations generally predict a proliferation of A. fundyense abundance in mid-June
within areas of retentive circulation such as Cape Cod Bay. This proliferation is not
observed, and better resolution of the losses and limitations acting on A. fundyense is
needed at this stage of the bloom.

Thesis Supervisor: Dennis J. McGillicuddy
Title: Associate Scientist, Woods Hole Oceanographic Institution
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Chapter 1

Introduction



Blooms of the toxic dinoflagellate Alexandriumfundyense are annually recurrent

phenomena in the Gulf of Maine during the spring and summer months. Toxins

produced by A. fundyense lead to paralytic shellfish poisoning (PSP), a potentially fatal

illness caused by consumption of shellfish from exposed regions. This public health risk

necessitates rigorous monitoring of potentially affected areas and has lead to repeated

closures of shellfish beds along the coast and in the offshore waters of the Gulf of Maine

(Shumway, et al., 1988). Within the marine food web, PSP has been linked to mortality

of larval and juvenile stages of fish (White, et al., 1989), and even the death of marine

mammals such as humpback whales (Geraci, et al., 1989). An understanding of the

factors that determine the distribution and abundance of A. fundyense within the Gulf of

Maine is therefore of considerable scientific, economic, and public health interest.

Alexandrium species are characterized by a life cycle that includes both a resting

benthic cyst and a vegetative cell (Anderson, 1998). Transitions between these stages

have long been thought critical to understanding bloom dynamics in coastal waters

(Anderson and Wall, 1978, Anderson, et al., 1983). The transition between resting and

vegetative stages occurs through the process of germination. Rates of germination are

controlled by diverse factors including light, temperature, oxygen in the sediments, and

an internal endogenous clock (Anderson, 1980, Anderson and Keafer, 1987, Anderson, et

al., 1987, Anderson, et al., submitted, Matrai, et al., submitted). Upon germination,

vegetative A. fundyense cells swim upward to the euphotic zone, where they undergo a

stage of vegetative growth. Some strains enlist coordinated vertical migrations in

response to nutrients and light during this stage (Maclntyre, et al., 1997, Cullen, et al.,

2004). The vegetative growth stage terminates with the formation of gametes that fuse to
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form a new cyst. The onset of encystment has been difficult to observe in the field, but it

is thought to be a reaction to environmental stress and has been induced by nutrient

depletion in the laboratory (Anderson, et al., 1984, Anderson and Lindquist, 1985).

Blooms of A. fundyense in the Gulf of Maine do not develop in static water

columns, but within a dynamical physical context characterized by energetic motions

covering a broad range of scales. At the largest scales, a persistent Gulf-wide circulation

is driven by density gradients between high salinity slope water in the Gulfs deep basins

and fresher coastal waters derived from the Scotian shelf and local river inputs (Bigelow,

1927, Brooks, 1985, Fig. 1). This current is subdivided into a series of segments and

branch points (Lynch, et al., 1997). The direction of flow at the branch points is

modulated by a diverse set of factors including wind, river input, bathymetric effects, and

the strength of the geopotential low that generally forms over Jordan Basin in response to

dense slope water in its interior (Brooks and Townsend, 1989, Brooks, 1994, Lynch, et

al., 1997, Pettigrew, et al., 1998). Within each branch, interactions between local river

inputs, bathymetry and wind forcing can create energetic motions over daily time scales

and tens of kilometers (e.g. Fong, et al., 1997, Geyer, et al., 2004). A. fundyense blooms

have been demonstrated to strongly interact with the physical dynamics over the full

range of scales described above (Franks and Anderson, 1992a, Townsend, et al., 2001,

McGillicuddy, et al., 2003, Anderson, et al., 2004a, McGillicuddy, et al., submitted-b).

This interweaving of the complex life history of A. fundyense and the dynamic physical

environment of the WGOM suggests the use of a coupled physical-biological model to

diagnose bloom dynamics.
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Figure 1: The Gulf of Maine and study region. The study domain is outlined in black.
Depth contours are at 50, 100, 150 and 200 meters. The direction of flow of the Maine
Coastal Current (adapted from Lynch et al., 1997) is shown as a thick gray line. Branch
points offshore of Penobscot Bay and Cape Ann are notable. The region of interest for
the studies herein is the western Gulf of Maine (WGOM), and is outlined by the thick,
dark line.

This thesis focuses on bloom patterns in the western Gulf of Maine, which is the

region south and west of Penobscot Bay in Fig. 1. Shellfish toxicity has been observed

continuously in the region since a large events toxicity events in 1972 and 1974

(Shumway, et al., 1988). While there was initial conjecture that blooms in the region

were linked to coastal upwelling (Mulligan, 1973, Hartwell, 1975, Mulligan, 1975), a

series of papers by Franks and Anderson (1992a, 1992b) demonstrated that patterns of

WGOM shellfish toxicity were more consistent with the along-shore advection of cells in

association with the buoyant plume of the Kennebec and Androscoggin rivers. This

finding led to the formulation of the "plume advection hypothesis", which consisted of

several components paraphrased below:
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"* A source of Alexandriumfundyense in the north of the region possibly associated

with the Kennebec/Androscoggin estuaries.

"* A pulse of freshwater in May carries cells out of the estuaries, entrains nearshore

populations, and is critical to the along-coast propagation of cells and associated

shellfish toxicity.

"* Upwelling winds force the river plume and cells offshore and away from

shellfish beds, and downwelling winds hold the plume to the coast and increase

southward transport.

This conceptual model was found to be consistent with a observations along a series of

transects near Cape Ann (Franks and Anderson, 1992a), and with long terms toxicity

records (Franks and Anderson, 1992b).

A second study was undertaken in 1993 and 1994 in an effort to test the dynamics

of the plume advection hypothesis, and to refine and resolve its elements (Anderson, et

al., 2004a, Geyer, et al., 2004). This study included broad survey coverage, as well as

mooring and drifter deployments. Shellfish toxicity was prevalent along the entire coast

in 1993, but was less severe in 1994 and restricted to areas north of Cape Ann.

Differences in toxicity were primarily attributed to variations in the wind forcing between

the two years, with winds being more upwelling favorable in the spring of 1994

(Anderson, et al., 2004a). Potential mechanisms for the delivery of cells to inshore

regions related to circulation induced around the edges of river plumes were also

discussed. Finally, a "two source" model for A. fundyense cells was proposed, with one

source in inshore waters near Casco Bay, and a second derived from germination within

offshore cyst beds and inflows of vegetative cells from the EGOM.
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In this thesis, a coupled physical-biological model is constructed to synthesize

present knowledge of the physical and biological dynamics that govern A. fundyense

blooms in the western Gulf of Maine. This model is compared with observations to test

hypotheses concerning bloom dynamics. The primary goals are to rigorously test the

plausibility of the plume advection hypothesis, to further resolve the factors controlling

bloom transport and net growth, to provide quantitative estimates of various sources and

sinks of cells, and to identify major remaining uncertainties.

Chapter 2 provides a detailed description of the application of maximum

likelihood theory to test hypotheses concerning the parameters governing bloom

dynamics. While determined laboratory and field efforts have constrained key aspects of

the biological dynamics, the potential complexity of the modeled processes and the

measurement challenges inevitably produce uncertain model parameters. This problem is

ubiquitous within coupled physical-biological modeling, and parameter values are often

tuned within their uncertainty to best match observations. However, observations can be

sparse and noisy, and approaching this procedure in a statistically rigorous fashion is

essential if false conclusions regarding the parameter values are to be avoided. Chapter 2

begins by demonstrating key properties of maximum likelihood estimates and the use of

the maximum likelihood ratio test to constrain parameter values using the example of a

linear regression. This is followed by a detailed methodological discussion of the

application of these tools for testing hypotheses concerning A. fundyense blooms in the

Gulf of Maine. Particular attention is paid to pragmatic steps that must be taken in

translating theory into practice. Limitations of and potential improvements to the

approach are also discussed.
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Chapter 3 tests the ability of four potential biological model structures to match

the timing and magnitude of the observed A. fundyense bloom in the spring of 1993. The

methodology applied is that described in detail within Chapter 2. The model structures

are nested, in that each adds an additional degree of freedom to the prior structure. As

each new parameter is added, maximum likelihood estimation is used to determine if the

skill added supports the rejection of the previous model structure for the more complex

alternative. The focus of the model diagnosis is the estimation of the contributions of the

various sources of A. fundyense to the western Gulf of Maine, identification of the factors

controlling net growth, and assessment of the impact of net growth on bloom magnitude

and the cell distribution.

Chapter 4 tests a range of parameter values found optimal in 1993 against the

1994 data set to evaluate the inter-annual robustness of the model. Diagnosis focuses on

the underlying physical and biological causes for the differences in A. fundyense

abundance, distribution, and associated shellfish toxicity between the two years. Central

to the analysis is a series of exchanges in model forcing for the two years. Estimates of

the sources and sinks of cells are provided both in a domain-averaged sense, and within

specific regions (Casco Bay and within Massachusetts and Cape Cod Bays) in order to

further resolve elements of the bloom dynamics.

The thesis concludes by summarizing contributions of this thesis to the

understanding of A. fundyense bloom dynamics in the western Gulf of Maine. Key

aspects of the hypothesis testing procedure and potential improvements are also

discussed. Lastly, prospects for future model improvement are addressed.
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Abstract

Models formulated to represent the dynamics of ocean ecosystems often contain
parameters and processes that are subject to a high degree of uncertainty. Observations
provide a means to test these models and constrain parameters. However, the challenges
of oceanographic observation often lead to sparse and noisy data. In addition, the
model/data misfit in such comparisons likely contains contributions of physical,
biological, and chemical origin that make the properties of the error difficult to interpret
and predict. These aspects suggest the desirability of a quantitative, statistical approach
to model/data comparison if erroneous conclusions are to be avoided. Maximum
likelihood estimation and the maximum likelihood ratio test (m.l.r.t.) provide the means
for one such approach. This paper details an application of these tools to test hypotheses
concerning the initiation and development of Harmful Algal Blooms in the Gulf of Maine
using a physical-biological model. The key aspects of the theory are first presented using
the example of a linear regression. Convergence to several familiar results is
demonstrated, and relationships between the quality and quantity of data and the ability to
constrain model parameters are explored. Application to the study of harmful algal
blooms in the Gulf of Maine is then detailed. Emphasis is placed on the pragmatic
decisions required to translate the theory to application as well as the consequences of
these decisions. The steps most critical to successful application were: 1) The use of an
appropriately defined sensitivity metric to limit the number of parameters considered to
those reflected in the observations and most critical to the question of interest, and 2) The
application of basic a-priori knowledge of parameter ranges to focus the model
optimization. While these tools are not the solution for all the challenges facing the
evaluation and diagnosis of ocean ecosystem models, they can offer inroads in several
areas. These include aiding in the extraction of reliable information from sparse and
noisy data sets, providing guidance concerning the choice of misfit weights, and
providing information for model assessment, diagnosis, and further model improvement.
Future coupling of these tools with more advanced optimization techniques such as the
adjoint method may greatly increase their utility. However, interpretation of results is
often impeded by the potentially diverse origins of model/data misfit. Additional
investigation character of the various components of the misfit is therefore also needed.
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1. Introduction

Models formulated to represent the dynamics of ocean ecosystems are often

subject to a high degree of uncertainty due to the potential complexity of the physical,

chemical, and biological processes involved (e.g. Hofmann and Lascara, 1998). This

uncertainty must be carefully considered when evaluating models against observational

data if false rejection of hypothesized dynamics is to be avoided. This often entails

varying the values of model parameters within their envelopes of uncertainty until a fit

that is in some sense optimal is achieved. The best-fit parameter values provide

estimations of rates, thresholds, and other controls on ocean ecosystems that may be

difficult to observe directly. The model/data fit achieved by a hypothesized set of

dynamics provides an assessment of the explanatory power of the hypothesis and analysis

of the remaining misfit along with model sensitivity can guide further improvement.

Competing hypotheses can be tested against one another by comparing the relative fit

achieved under each. Evaluation of the achieved fit relative to that expected if the

hypothesized model correctly represents the dynamics of the natural system provides the

basis for model validation. Lastly, model results can be diagnosed to gain dynamical

insight beyond that which can be gleaned from the observations alone.

While the steps outlined above are simple in concept, extracting reliable

information from them can be challenging. Observations are often sparse and noisy, and

model/data misfits can derive from a combination of physical, biological, and chemical

origins. These limitations greatly influence the degree to which model parameters can be

constrained, and care must be taken not to draw conclusions based on differences in

parameter values having a negligible influence on the model/data fit. The diverse origins

of the misfit raise the possibility of inventing biological explanations for chemical and/or
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physical deficiencies and vice-versa. They may also confound precise definition of the

achievable fit, and thus hinder formal model validation. The definition of the optimal fit

can also be complicated by uncertainty surrounding the best choice of misfit weights

and/or how to blend misfits with different units (Evans, 2003).

This paper describes the application of maximum likelihood estimation theory to

address some of the issues just described within the context of a coupled physical-

biological model of harmful algal blooms in the Gulf of Maine. Maximum likelihood

estimation provides a robust tool for obtaining model parameter estimates, confidence

intervals, and for testing hypotheses concerning model dynamics. The methodology also

provides information for assessing the scales of variability in the observations captured

by the model, and offers guidance in the choice of misfit weights. The approach is

generally applicable to cases with an abundance of uncertain parameters, of which only a

few may be of primary interest. The largest limitation of the methodology is its reliance

on large sample approximations to test for statistical significance.

The first section of this paper is dedicated to reviewing the likelihood concept, the

asymptotic theory of maximum likelihood estimates, and the asymptotic likelihood ratio

test (where asymptotic in this context refers to properties achieved as the number of

observations (n) becomes large). This review is done using a simple example: that of a

linear regression. Convergence to several familiar results is demonstrated, and several

relationships between the results and the quantity and quality of the data are highlighted.

Next, the application of the methodology to a model of the initiation and development of

harmful algal blooms in the Gulf of Maine is described. Particular attention is paid to the

pragmatic decisions that must be made in translating theory to practice and the impact of
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these decisions on the conclusions drawn from the analysis. The paper concludes by

suggesting critical steps for the successful application of this methodology to coupled

physical/biological models, as well as potential improvements to the application

described here.

2. Maximum Likelihood Estimation Theory

The likelihood concept is extensively used for statistical inference, and the related

literature is vast. This section does not attempt a detailed review, but focuses on

illuminating key concepts using a simple example: the linear regression. It begins by

defining the likelihood function and the maximum likelihood estimate (m.l.e.), and then

reviews the properties of such estimates for large samples. It then proceeds to discuss the

use of the maximum likelihood ratio test to calculate confidence intervals around model

parameters and to test hypotheses. Lastly, it discusses some guidelines for choosing a

misfit model. The relationship between the misfit model and the misfit weights is

highlighted and objective means of determining the suitability of the misfit model are

discussed. For a more complete treatment, dozens of texts are available. The texts of

Hogg and Craig (1995) and Cox and Hinkley (1974) are particularly useful, with the

former being the more introductory of the two. Cox and Hinkley also provide a brief

review of some of the seminal papers pertaining to maximum likelihood estimation.

2.1 The Likelihood Function and Maximum Likelihood Estimates

Consider the set of generic observations shown in Fig. 1. A linear model is

proposed to explain the variation in the n xl vector of observations y with x, but there is

some random noise (e) associated with each data point. The model is thus written:
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Y =/, +0 1x+= +C (1)

Where flo is the intercept and fl, the slope. In this example, the true values of the

parameters are 80J= 0.0, fl = 1.0, and the stochastic noise is normally distributed with

or= 100. In real applications these true values are unknown and the goal is to use the

observations to obtain estimates (fto, A , e"2 ) of the true values and confidence intervals.

This section will therefore proceed as if ignorant of the true parameter values.

Assume that considerations of the observational noise and the processes that are

expected to be resolved deterministically by the linear model chosen suggest that the

misfits between the model and the data should be normally distributed with 0 mean, have

uncertain variance a 2, and independent. No a-priori estimate of the misfit variance has

been asserted in this example, as the fitting process will determine the amount of noise

remaining after the linear model is applied. However, the methodology described herein

is applicable to cases where the noise is asserted a-priori (this will be discussed in greater

detail in Section 2.3). The stochastic description of the misfit will be referred to herein as

the misfit model', and is differentiated from the dynamics model: j = fl, + fi8x. The

combination of the dynamics model and the misfit model is referred to simply as "the

model". The initial misfit model can be derived from a variety of sources including

theoretical considerations, previous study of the observational apparatus being used,

exploratory analysis of the data set, or simply be a good first guess based on experience.

' This stochastic description is often referred to as the "error model", with the error being formally defined
as the difference between the observations and the true value of the quantity being measured. If the model
is correct, the difference between model and data (i.e. the misfit) approaches the difference between truth
and data (i.e. the error). The "misfit model" designation is used herein in recognition that even the most
skillfull of physical/biological models are likely to have unresolved and non-deterministically resolved
processes that contribute to the noise between the model and data. The best that can be hoped for is thus a
model that matches the data to this expected extent, and not one that attains absolute truth.
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In either case, it is only a description under consideration and must be critically examined

against the eventual model/data misfits before the model is diagnosed and conclusions are

made (section 2.3). The likelihood (L) of a set of n model/data misfits is defined as the

product of the probabilities of each individual misfit (i.e. the joint probability) calculated

according to the misfit model. For misfit model above:

L(O; y) = L(,60, Al, a'2; Yi ..--YJ n I exp (i_ý)2(2)=1 ex 20"{i = 172) 2  (2

The notation L(O; y) is used to emphasize the fact that the likelihood associated with each

choice of the uncertain parameters from the p x I parameter vector 0 = [1Ao, A3, ' 2 ] is

dependent upon the degree to which they explain the n x I vector of observations y. It is

common to deal with the log of the likelihood function, as this changes product in (2) to a

sum and does not influence the position of the maximum:

nn
lnL(O;y) = -nln(2,r" 2 )--1 2Y -5)2 (3)

2 2 2 =1

It seems sensible that good estimates of 130, A3 and 02 are those that maximize (3).

Estimates of parameters obtained in this way are referred to as maximum likelihood

estimates (m.l.e.'s), and written as Al0, Al1, and .2. For the example above,

PO = -1.38, /Ji = 1.02, and &.2= 101.58 (Fig. 2a).

To see the close relationship between maximum likelihood for normally

distributed misfits and least squares, note that the partial derivatives with respect to the

three uncertain parameters (fl0 , A1 ,- 2) are necessarily 0 at the likelihood maximum.

Taking the partial derivative of (3) with respect to o"2 yields the condition:
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I1nL(0;y) n 1 •(- )2
-r TOT •-(y- :0 (4)

That requires:

2 (~ )a2 81 (5)
n

The maximum likelihood estimate of o-2 is thus the variance of the sample of misfits

associated with any choice of 80 and i,. Inspection of (3) in light of this result reveals

that the second term of the left side necessarily approaches n after substitution of "2

regardless of the degree of fit. Thus, to maximize the likelihood, one must choose

,60 and /,J to minimize a2 in the first term of (3). Which, by (5), is accomplished

through minimizing • (y, - 5)2 (Fig. 2b). Thus, even when the misfit variance is left to

the estimation, the criterion that the variability not explained by the model is minimized

leads to least squares when the misfit is normally distributed.

Maximum likelihood estimates often have desirable properties regardless of the

sample size, but such estimates are particularly good for large samples and if certain mild

regularity conditions on the probability density are met (Table 1, LeCam, 1970, Cox and

Hinckley, 1974, pp. 279-311). Perhaps most notable is that, when the misfit model is an

accurate stochastic description of the misfit, the difference between the m.l.e.'s and the

true parameter value2 (0-0*) has a limiting normal distribution as n -- c, with

2 Herein, the notation 0* has been used to differentiate the true values of a parameters from the generic

argument 0, the value set by a null hypothesis 00, and the estimate of the true parameter values 0.

Notation varies depending on the source. Most notably, 0 is often used for both the true parameter value
and the generic argument.
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variance-covariance 1 '(0). 1(0) is referred to as the Fisher Information Matrix, which

can be written in terms of the likelihood using two alternate but equivalent expressions.

In the present case:

E[ EilnL lnLL E alnL lnL

) IlnL a1nL )2

E __1nL_ (31 nL F 1
1(0) E al•L An E lnLl E alnLa 2 (6a)

EJ JlnL a lnLlE alnL alnL E j( anL )2l

lau2 a)60 aa2  aflý Je

EEElnL- E } 21nLa,#0 afi'aT 2J

SaI nL E a 2o nL E a2 l nL (6b)

E a 2 lnL E a 2 lnL E a 2 In L
a E'aio aU2af, } Ei(aau2)

Where E is the expected value operator, and L = L(0; y). The presence of the second

derivative in representation (6b) suggests that the difference between parameter estimates

and true parameter values is strongly linked to the curvature of the likelihood surface in

the neighborhood of the true parameter value. The properties of this matrix are reflected

in the log-likelihood surface (Fig. 2a). If the peak is sharp, the likelihood quickly

decreases as parameter values are perturbed, the diagonal elements of 1(0) are large, and

the corresponding variance between m.l.e. and true parameter value is small (i.e. the

parameter is well constrained by the data). The relationship between this result and the

quantity and quality of the data will be explored further in section 2.2.
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A further consequence of the asymptotic normality of m.l.e.'s is that the sum of

the squared difference between the m.l.e. and the true value of the parameter, scaled by

the variance-covariance matrix 1 -' (0):

0* i(~o -0* 1(7)

has a limiting X2 distribution with p degrees of freedom, where p is the number of

uncertain parameters in 0 (Cox and Hinckley, 1974). This is also true of normally

distributed sets of model/data residuals scaled by their covariance, a fact that is

commonly used to test hypotheses concerning the degree of model/data fit attained

relative to prior expectation (Muccino, et al., 2004). The difference herein is that the

relationship is used to estimate the variance of estimates of uncertain parameters about

their true values. Not surprisingly, the relationship between (7) and the X2 distribution is

the basis for hypothesis tests concerning parameter values (section 2.2).

It must be stressed that although the results above were presented using the

specific example of linear regression with normal errors, they are general to any

probability density function that satisfies the mild regularity conditions. These conditions

primarily require the smooth variation of the likelihood function with changes in the

parameter values and the finite dimension of the parameter space. Most notably, the first

three derivatives of the likelihood must exist in the neighborhood of the true parameter

value, as Taylor expansions are necessary to demonstrate several of the properties

described in Table 1. The mildness of these conditions makes it possible to deal with

many non-gaussian misfits. The persistence of the properties in Table 1 for non-gaussian

statistics is primarily due to the action of the central limit theorem on large samples.

Refer to Cox and Hinkley (1974) or LeCam (1970).
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2.2 The Maximum Likelihood Ratio Test

The maximum likelihood ratio test (m.l.r.t.) provides a means to test hypotheses

regarding model parameters and to construct confidence intervals based on changes in the

likelihood. The ratio (X) is constructed by comparing the likelihood maximized over a

parameter space (Q) to that obtained over a nested subspace (1i 0 ) restricted by setting

precise values for 1 or more of the parameters in Q. For example, the following ratio is

formed when testing the hypothesis that A = 5.0, ,Aj = 0.9:

A = L(fl0 = 5.0,8J1 = 0.9,6-2;y) _ L(f20 ) _ L(o) (8)
L(0,,,6 L(ý2) L(0)

The restricted maximized likelihood in the numerator serves as the null hypothesis, while

the denominator forms the alternative. In the above example, maximization under the

null hypothesis requires only that the ID space 920 (containing different values of 02) be

searched. This yields an estimate of the parameter set under the null hypothesis 00. In

the alternative, the 3D space QŽ must be searched, yielding the parameter set 0. Note that

in (8), two estimates of o2 are produced: 6&2 and 6-2. The "0" designation is used to

specify that the second estimate was determined under the restrictions of the null

hypothesis. Such "nuisance parameters" occur whenever the precise value of a parameter

is not specified within the null hypothesis. While such parameters can ruin the properties

of some hypothesis testing procedures, the m.l.r.t. is robust to their presence (Cox and

Hinckley, 1974, p. 323). This is a notable advantage when dealing with the large

parameter spaces common in ecosystem models.
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Clearly, the likelihood of the alternative hypothesis will be greater than that of the

null due to the increased search space. How much greater the likelihood of the

alternative must be before rejection of the null is supported can be approximated using

the asymptotic properties of the m.l.e. (Table 1). It can be shown that the quantity:

- 2 In(A) = -2(ln(L(f2o)) - ln(L(ý2))) = -2(In(L( 0o) - In L(0)) (9)

Will have an approximate )? distribution with the number of degrees of freedom equal to

the difference in the number of free parameters between the null and the alternative

hypotheses (dim(Q)-dim(Qio)) if the null hypothesis is true (i.e. 00 = 0*). Derivations of

this result can be found in Cox and Hinkley (1974, pp. 311-331). However, the

plausibility of this result can be seen in the ID case by performing a Taylor expansion of

ln(2) about d to solve for the ratio at 0":

In L(0") -In L(0) = In L(d) - In L(t) + (0- - t•) (In L(0) - In L(t)4.-

1 (0. z d2 ( 
(10)

2 d6 2 -lnL(O)-lnL(O)

Where 0o-isa point satisfying 0 - 0' 1:- 0o After cancellation and noting that the

derivative with respect Oevaluated at the likelihood maximum is 0 by definition, (10)

simplifies to:

d~ )2 dL(0)
ln L(0')-n( I ) = 2 dO) ()
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Noting that 0- --> 0* as the sample size becomes large due to the consistency property of

m.l.e.'s (table 1) and that - d 2L(O*)/dO2 = 1(0) allows one to write:

- 21n(2) = (d -0 (0)(t5- 0-) (12)

Which, by (7) is known to have a X distribution with 1 degree of freedom. The

extension to a p x 1 vector of parameters is simply a straightforward expansion of this

result.

Applying this result to the hypothesis (8), the maximum log-likelihood under the

null hypothesis is -378.50, while that under the alternative is -372.94. The quantity

- 2 ln(G) is 11.03, which is larger than -99.6% of the points one would expect from a X2

distribution with 2 degrees of freedom. The null hypothesis can thus be firmly rejected.

Confidence intervals can also be constructed. For example, 90% of the values from a X2

distribution with 2 degrees of freedom are less than 4.6. Substitution of this value into

the R.H.S. of (7) and solving for ln(i20) defines the value of the 90% confidence contour

(Fig. 2a, thick dark contour). That is, null hypotheses stating values outside of this

contour can be rejected with 90% confidence. It is notable that this contour is nearly

identical to that derived by the commonly used F-test (e.g. Draper and Smith, 1981),

which is much more restricted in its use (thick gray contour in Fig. 2a). The size and

shape of confidence intervals reflect the properties of 1(0): the diagonal terms set the

scale of the interval in parameter space, while the off-diagonal covariances control the tilt

of the confidence region (i.e. shallow slopes are more likely coupled with "+" y-
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intercepts in Figs. 2, 3, and 4). The point fl0 = 5.0, 8 = 0.9 (filled square) clearly falls

outside of this contour, and would thus be rejected with greater than 90% confidence.

While the change in likelihood required to reject a hypothesis is set by the

characteristics of the X2 distribution, the size of the shift away from the true parameter

necessary to produce that change depends on 1) the number and quality of the

observations, and 2) the sensitivity of the parameters to the information within them.

Decreases in either the number of the observations (Fig. 3) or their quality (Fig. 4)

decrease the sharpness of the peak in the likelihood surface near the m.l.e.. This reflects

a decrease in the information about the parameter values within the sample (i.e. the terms

of the information matrix 1(0) decrease) and leads to an expansion in the confidence

interval. In one case (panel C in Fig. 4) it is no longer possible to reject the null

hypothesis ,8 = 5.0,,81 = 0.9 at the 90% significance level.

The m.l.r.t. is also useful when testing for the necessity of another variable. Such

an approach is useful for identifying the simplest model that can explain the data as well

as any more complex options. For example, if the alternative model:

Y = flo +'81 x + f82x2  (13)

Is proposed, the necessity of the additional term can be tested by forming the ratio:

., =L(/J° ' ,l° ,6 2 =0) (14)

L(/J0 ,/3,fl2 42

The maximization of the likelihood with this additional parameter for this realization is -

372.49, only slightly greater than the likelihood associated with the linear model (-

372.94). This difference (- 2 ln(A) = 0.90 ) is only significant at - 66% level based on a
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